My Maths Divide Decimals by Whole Numbers

When dividing decimals by whole numbers use the bus stop method of division as normal.

Place the decimal point for
the quotient directly above
the decimal point in the dividend.

Follow the usual process for short division working round the decimal point.

My Maths-Perimeter

Finding the perimeter
The perimeter is the total distance around the autside of a 2D shape.

To find the perimeter of any straight-sided shape, just add up the length of all the sides.

$$
5+3+2+4+3+7
$$

$=24 \mathrm{~cm}$

Tuesday - LBQ

Reasoning: Properties of Numbers

- A factor is a number that divides into another number exactly and without leaving a remainder.
- Most numbers have an even number of factors; however, a square number has an odd number of factors.
- A prime number has only two factors - the number itself and 1.
- A prime factor is a factor that is a prime number. In other words: any of the prime numbers that can be multiplied to give the original number. Example: The prime factors of 15 are 3 and 5 because $3 \times 5=15$, and 3 and 5 are prime numbers
- A common multiple is a number that is a multiple of two or more numbers e.g. a common multiple of 3 and 4 is 12
- A composite number is a positive number (not negative) which is not a prime number e.g. 6 is a composite number but 7 isn't

My Maths- Squares and Cubes

\section*{Square Numbers
 When a number has been multiplied by itself, we say that the answer is a square number.

This means four cubed or four to the power of three. It means there have been three fours multiplied together.

$$
4^{3}=4 \times 4 \times 4=64
$$

Have a look at this picture of the cube. Can you explain how it links to 4^{3} ?

Want to learn more? Go to this website to watch a video and take a quiz. https://www.bbc.co.uk/bitesize/topics/ zyhs7p3/articles/z2ndsrd

My Maths- Time and Timetables

What is the 24-hour clock?

- The 24-hour clock is more often shown on digital clocks and is written in a 4-digit form, with the first two digits representing the hour and the last two representing the minutes.
- There is no need for a.m. or p.m. as each time represents each hour in a 24 -hour day. For example, $0300=3$ rd hour of the day, or $3 \mathrm{am} ; 1400=14$ th hour of the day, or $2 \mathrm{pm} ; 1830=30$ minutes past the 18th hour of the day, or 6.30pm
- To convert from a 12 -hour clock to a 24 -hour clock add 12 to the hours after midday, e.g. 3pm becomes 15:00 because $3+$ $12=15.8 \mathrm{pm}$ becomes 20:00 because $8+12=20$.

12 hour	24 hour
4:25am	$\underline{04: 25}$
9:20am	$\underline{09: 20}$
2:55am	$\underline{02: 55}$
11:35am	$\underline{11: 35}$
1:07am	$\underline{01: 07}$
12:42am	$\underline{00: 42}$
6:13am	$\underline{06: 13}$

You do not add 12 to am times but you must ensure there are 4 digits.

My Maths- Time and Timetables

If you want to revise converting 12 hour to 24 hour time in more depth then watch this video: https://www.youtube.com/watch?v=6zwTu1-GzAA

London Euston	0640	1425	2205
Watford Junction	0655	1440	-
Milton Keynes Central	0715	1506	2248
Northampton	-	-	-
Rugby	-	1514	-
Coventry	0749	1524	2352
Birmingham Intl	0802	1539	0005
Birmingham New Street	0814	1551	0017
Wolverhampton	0841	-	0052

How long does the 06:40 from Euston take to get to Coventry?

Arrives 07:49 so 06:40 until 07:49 = 1 hour 9minutes.

The $15: 14$ from Rugby is running 30 minutes late - what time will it arrive in Birmingham New Street?

Should arrive 15:51 so $15: 51$ plus 30
minutes $=16: 21$

Thursday - LBQ

Solve one step problems - Properties of Numbers

Pentagon - 5 sided shape Heptagon - 7 sided shape Octagon - 8 sided shape Nonagon - 9 sided shape

Only factors of 36 go in the left section.
Only factors of 12 go in the right section.
Factors of both 36 and 12 go in the middle section.

My Maths - Units of Length

Converting Units of Length

To be able to convert units of length you need to know

$$
\begin{aligned}
& \cdot 10 \mathrm{~mm}=1 \mathrm{~cm} \\
& \cdot 100 \mathrm{~cm}=1 \mathrm{~m}
\end{aligned}
$$

Converting Units of Length

To convert metres to centimetres you have to multiply by 100 . For example...

5 m can be converted to centimetres by multiplying 5 by 100 .

Converting Units of Length

Knowing that $10 \mathrm{~mm}=1 \mathrm{~cm}$ you can change from millimetres to centimetres by dividing by 10 . For example...

20 mm can be converted to centimetres by dividing 20 by $10 \ldots$...

Comparing Lengths

The easiest way to compare lengths is to convert them into the same unit of

The
snake is long and the green snake is 150 mm long.
Which snake is the longest?
Convert both measurements to centimetres..

$$
\begin{aligned}
\text { snake } & = \\
\text { Green } \text { snake } & =15 \mathrm{~cm}
\end{aligned}
$$

The
snake is the longest.

Friday - LBQ
 Properties of Numbers Topic Review

- A composite number is a positive number (not negative) which is not a prime number e.g. 6 is a composite number but 7 isn't
- A prime number has only two factors - the number itself and 1.
- A prime factor is a factor that is a prime number. In other words: any of the prime numbers that can be multiplied to give the original number. Example: The prime factors of 15 are 3 and 5 because $3 \times 5=15$, and 3 and 5 are prime numbers

